Discussion

The smooth increase in log K_{MA}^* with decreasing solvent polarity is similar to trends observed for other polyether ligands [7] and analogous to the effect of solvent polarity on K_{H1}^* [4]. The stability constants of the LiA complex are 4-5 fold greater than the NaA complex, in contrast to other carboxylic acid ionophores [1]. The stability of the Li⁺ complex on vesicle membranes is similar to the solution value in $80-85\%$ MeOH-H₂O, as is the case with the protonation constant [4]. This finding suggests a predominantly interfacial location of the complex. However, the discontinuity in $\log K_{LiA}^{b}$ indicates that portions of complex penetrate the membrane acyl group region [8].

The present conditions do not allow observation of the 2:1, ionophore:cation, complexes with monovalent cations which were observed in bulk solvent extraction experiments [2] . These higher order complexes may be of greater interest for the transport of monovalent cations by A23187 since preliminary experiments show the rate of A23187-dependent Li⁺ transport into mitochondria is a second order function of the ionophore level.

Acknowledgements. This research was supported by grants GM-24701, HL08214 and by The Hormel Foundation.

- C. Tissier, J. Julliard, M. Dupin and G. Jeminet, J. *Chim. Phys,* 76, 611 (1979).
- D. R. Pfeiffer and H. A. Lardy, *Biochemistry, 15, 935 (1976).*
- *G.* Ben-Hayym and G. H. Krause, *Arch. Biochem. Biophys.,* 202, 546 (1980).
- R. F. Kauffman, R. W. Taylor and D. R. Pfeiffer, *Biochemistry, 21, 2426 (1982).*
- D. A. Barrow and B. R. Lentz, *Biochim. Biophys. Acta, 597, 92 (1980).*
- 6 Y. Barenholz, D. Gibbes, B. J. Litman, J. Goll, T. E. Thompson and F. D. Carlson, *Biochemistry, 16, 2806 (1977).*
- W. Burgermeister and R. Winkler-Oswatitsch, in 'Inorganic Chemistry', II, Vol. 69, M. J. S. Dewar *et al. (eds.),* springer, Berlin, Heidelberg, New York, 1977, pp. 11115
- R. F. Kauffman, C. J. Chapman and D. R. Pfeiffer, *Biochemistry,* submitted for publication.

R22

Complex Formation in the A13+-Citrate System

LARS-OLOF OHMAN and STAFFAN SJÖBERG

Department of Inorganic Chemistry, University of Umea, S901- 87 Umeci, Sweden

Aluminium is regarded as a nonessential element for living organisms and has been considered as nontoxic in biological systems. This situation has

TABLE I. Formation Constants Defined According to the General Equilibria: $pH^+ + qAl^{3+} + rH_3L \Leftrightarrow (H^+)_{p}(Al^{3+})_{q}$ - $(H_3L)_r$; β_{pqr} . The errors given correspond to $3\sigma(\log \beta_{pqr})$.

Complex	рqг	$log(\beta_{\text{par}} \pm 3\sigma)$
H_2L	-1 0 1	-2.769 ± 0.003
H_2L^{2-}	-2 0 1	-6.850 ± 0.003
L^{3-}	-3 0 1	-12.067 ± 0.004
$A H L^*$	-2 1 1	-2.68 ± 0.024
AlL	-3 1 1	-4.925 ± 0.008
AlL_2^{3-}	-6 1 2	-12.53 ± 0.12
Al ₃ (OH) ₄) ⁴⁻	-13 3 3	-21.77 ± 0.019

changed, however, with the suspicion that aluminium is the agent causing dialysis encephalopathy in patients undergoing haemodyalysis with domestic water supplies high in aluminium [1]. Furthermore, the characteristic pathological finding in Alzheimer's disease is an abnormal build-up of aluminium in some regions of the Alzheimer brains *[2]* . Also, aluminium is implicated as a metal toxic to aquatic life, possibly as the $Al(OH)_2^*$ species [3], in acidified lakes and streams.

As the toxicity of a metal is closely related to its speciation, a way to suppress the *toxic* effect would be to complexate the metal ion into non-toxic, stable chelate species. The aim of the present study is to show this upon stable Al complexes formed with citrate (L^{3-}) ions.

Experimental

The measurements were performed as a series of potentiometric (glass electrode) titrations in 0.6 M Na(Cl) at 25 °C. The following concentration ranges were investigated: $0.00025 \le B$, $C \le 0.016 M$ (B and C stand for the total concentration of Al^{3+} and H_3L resp.). $-\lg[H^{\dagger}]$ was varied within the limits $2 \leq$ $-lg[H^{\dagger}] \leq 8.$

Results and Discussion

An equilibrium analysis of the present system showed that besides a series of mononuclear complexes, *viz.* AHL^+ , AIL and AlL_2^3 ⁻ a very stable trinuclear complex is formed. Calculations based upon graphical ('core + links' mechanism [4]) as well as least squares computer calculations (LETA-GROPVRID $[5-7]$) showed the composition of this complex to be $Al_3H_{-4}L_3^{4-}$) (tentative composition $Al_3(OH)_4 L_3^{4-}$).

Formation constants for the different species are given in Table I.

The stability of $Al_3(OH)_4L_3^{4-}$ implies that with $4 \le -\lg[H^+] \le 7$, Al is almost quantitatively bound in this complex (provided $C/B \ge 1$). As a conse-

 q_1 and q_2 and q_3 and q_4 and q_5 and q_6 and q_7 and q_8 and q_9 and prince or this, the children elimination of all appropriate candidate for eliminating toxic Al species and
to avoid abnormal buildups of aluminium in human tissues.

- W. Caster and Wang, *Sci.* Total Environ., 17. . U. I D. R. S. Krishnan and S. Quittkat, *Brain,* 99,
- . <u>Ciap</u> $\frac{(19/0)}{2}$. Bisognia and C. Bisognia and C
- *N. DISCOII*, *J. P.* L.C. *Acta Chem. 8, 318 (1954).*
- Sillett, *Actu Chem. Scanu.*, *o.*, 299, 316 (1954).
- 5 N. Ingri and L. G. Sillén, Ark. Kemi, 23, 97 (1964).
- *353 (1969).* Brauner, L. G. and R. Whiteker, *Ark. Kemi,*
- *365 (1969).*

R₂₃

Thermodynamic Studies of the Reaction of Addition of Molecular Oxygen to Co(H) T_{total} T_{total} T_{total} T_{total} T_{total} Corr Corr Corr

SERGIO CABANI, NORBERTO CECCANTI and PAOLO GIANNI

Istituto di Chimica Fisica, Universitd di Piss, Piss, Italy

 \mathcal{A} s part of a systematic study on oxygen carrier carrie As part of a systematic study on oxygen carrier complexes $[1, 2]$, we carried out a calorimetric study
on the system $Co(II)$ -tetraethylenepentamine-(tetren)-OZ. Tetren is a pentadentate ligand with $f(t) = 0.2$. Fortun is a pointau mate ligame with forms a monobridged oxygenated complex of $Co(II)$, more similar to mononuclear peroxo complexes, interesting models of biological O_2 carriers, than the μ -hydroxo- μ -peroxo dibridged complexes usually $f(x) = \mu^2 p(x)$ divided complexes usually $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{20}$ calorimetric experiments, carried out by $\frac{1}{20}$

our calonification experiments, carried out by adding $Co(II)$ stock solution to O_2 -saturated solutions containing an excess of tetren, or by bubbling $O₂$ into Co(tetren)²⁺ aqueous solutions, produced for the binding of O_2 to Co(tetren)²⁺ an enthalpy change E_{x Ω} = -179.0 + 1.5 kJ I mol⁻¹. This value is $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$ compared with the enthalpy changes compared with the enthalpy changes of $\frac{1}{2}$ very large compared with the enthalpy changes
obtained in the formation of mononuclear species $\frac{1}{2}$ anche in the formation of monometed species $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ values usually falled from $\frac{1}{2}$ to $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ mol^{-1} [3]) starting from the non-oxygenated parent complex, and compared with the enthalpy changes measured for the formation of dibridged μ -hydroxo p_{in} for the formation of dibituged μ -hydroxo- μ_{1} for $I = 2e$ [2] μ_{2} μ_{2} μ_{2} μ_{3} = μ_{1} starting from μ_{2} ordor $L = 2cn \left[2\right]$ of $L = 1$ i.e. $\left[1\right]$ statting from non-oxygenated tetrazotate complexes of Co(II). The entropy for the binding of O₂ to the Co₂tetren₂O⁴⁺ copy for the binding of O_2 to the O_2 letters O_2 $mpcx$ is negative and its magnitude, when considerations are made of the characteristics of the reactions of O_2 addition, is: *(i)* very large when

compared with the formation of the of α binds associated with the folling of binuclear dibridged complexes, (ii) small when compared with those associated with the formation of mononuclear oxygenated species.

These findings allow a first approach to a comparison among the various types of cobalt oxygen carrier complexes in water. Other data are however necessary in order to attain a significant picture of the situation and to correlate the thermodynamic behaviour of these compounds in water to their structures.

- 1 S. Cabani, N. Ceccanti, G. Conti and P. Gianni, *Gazzetta,* **120** (2081), **159 (1982)** *2 S.* Cabani, N. Ceccanti and G. Conti, *J. Chem. SOL, Dalton*
- *Cabani, N. Cec* $Trans.$, in press.
- *P.*, *P.*, *P.*, *A.*, *P.*, *A.*, *P.*, *P.*,

R24

\overline{C} ralysis of Oxidation of Discou

ARTHUR E. MARTELL* and STEPHEN A. BEDELL

Department of Chemistry, Texas A & M University, College Station, Tex. 77843, U.S.A.

The oxidation of 2,6di-t-butylphenol (dbp) by $\frac{1}{2}$ me oxigation of $\frac{2}{3}$, $\frac{1}{2}$ is catalogue por position (dop) by molecular oxygen is catalyzed by the μ -peroxodicobalt(III) complexes formed from tetraethylenepentamine (tetren), bis(picolyl)diethylenetriamine
(pydien), and 1,4,10,13-tetraaza-7-thiatridecane 1,4,10,13-tetraaza-7-thiatridecane (tattd). The oxygenation equilibrium constants of the cobalt (II) complexes of these ligands, and the observed rate constants, are presented in Table I.
The rates of formation of the oxidative coupling product 3,3',5',5'-tetra-tetra-tetra-tetra-tetra-tetra-tetra-tetra-tetra-tetra-tetra-tetra-tetra-tetra-tetra- α and β , β , β , β -tetra-t-buryimple nodullione (upq) and the partial oxygen insertion product 2,6-tetra-tbutylbenzoquinone (bq) are shown to be first order with respect to the concentrations of both the cobalt-dioxygen complex (designated 'cat' for catalyst) and the phenol. The following rate expressions apply to this system:

$$
-\frac{[dbp]}{dt} = k_1 [cat] [dbp] + k_2 [cat] [dbp]
$$
 (1)

$$
\frac{d[bq]}{dt} = k_1 [cat] [dbp]
$$
 (2)

$$
\frac{d \left[dpq \right]}{dt} = \frac{k_2}{2} \left[cat \right] \left[dbp \right] \tag{3}
$$

It is interesting to the observed rate that the observed rate that the observed rate that the observed rate \mathcal{L} It is interesting to note that the observed rate